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Abstract
The tripartite nonlocality is investigated by the extent of violation of the Bell
inequality in a three-qubit system coupled to an environmental Ising spin
chain. In the weak-coupling region, we show that the tripartite Bell-inequality
violations can be fully destroyed in a finite time under decoherence induced
by the coupling with the spin environment. In addition, how the environment
affects the Bell-nonlocality sudden death is demonstrated.

PACS numbers: 03.65.Ta, 03.65.Ud, 03.67.-a

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is one of the most essential features in quantum mechanics and has received
much attention in many fields of physics in both theoretical aspects and experimental ones
[1]. It is a pure quantum correlation without classical counterpart and has been regarded
as a basic resource in quantum technologies such as quantum teleportation and quantum
cryptography [2]. As is known, a realistic system is surrounded by an environment, and
the unavoidable coupling between them will lead to decoherence of the system, which is the
main obstacle to realize quantum computing and quantum information processing. Much
effort has been devoted to the study of the entanglement evolution under the influence of the
environment [3–5]. It is pointed out by Yu and Eberly [3] that the entanglement of a pair of
qubits exposed to local noisy environments can fall abruptly to zero within a finite time. Such
a surprising phenomenon is termed entanglement sudden death (ESD). Due to its intrinsic
and practical interest, ESD has attracted considerable attention and much progress has been
made [6, 7]. However, the study of ESD has previously been limited in bipartite systems, for
the reason that the measure of multipartite entanglement is a difficult problem which is far
from being understood, and there is still no efficient general method to evaluate the quantum
entanglement, especially for mixed states. For the multipartite system, the nonlocal behavior
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can be measured by the extent of the violation of the Bell-type inequality. Recently, the
effect of Bell-nonlocality sudden death (BNSD) was indicated by the demonstration [8] that
multipartite Bell-inequality violations could be fully destroyed in a finite time in three-qubit
systems subject to basis-dependent multi-local asymptotic dephasing noise. A great deal of
interest has been focused on the study of BNSD in tripartite systems, because the exhibition
of BNSD illuminates the quantum–classical transition, quantum measurement and quantum
information processing where joint-state coherence and nonlocality are considered significant.
By following the methodology of [8], several researchers have discussed the destruction of
nonlocality as measured by the extent of violation of the tripartite Bell-type inequality in finite
time in various models [9–11].

More recently, there has been a growing interest in the study of decoherence induced by
spin environments [12–17]. Cucchietti et al [13] examined the decoherence of a central spin
interacting with a collection of independent spins. In the practical situation, particles in the
environment may have interactions with each other. Consequently, the entanglement evolution
in a correlated environment should be considered. Quan et al [14] have investigated the deco-
herence induced by a correlated Ising spin chain. They showed that the decoherence was best
enhanced by the quantum phase transition of the surrounding system. Sun et al [15] considered
two spins coupled to the Ising spin chain in a transverse field to reveal the effect of the correlated
environment on the entanglement dynamics of the two spins. In addition, Ma et al [16] studied
the entanglement evolution of three-qubit quantum states in a quantum-critical environment.
But the study of tripartite nonlocality in a correlated environment is still an open issue.

Motivated by these, we turn to extend the analysis of BNSD in a three-qubit system,
which is coupled to an Ising spin chain in a transverse field. Different from the previous
studies of BNSD [8, 18] in which all interactions are local, we actually consider BNSD under
the nonlocal nature of external noise in this paper. The nonlocality is demonstrated in a class
of initially Bell-nonlocal pure states of tripartite systems, namely, the maximally entangled
(GHZ) state. We also study the influence of the system–environment coupling, the strength of
the transverse field and the size of the environmental Ising chain on the Bell nonlocality.

The paper is organized as follows. In section 2, we introduce the model of the three-qubit
system coupled to a transverse Ising spin chain. By exactly diagonalizing the Hamiltonian,
we give an expression of the reduced density matrix of the three-spin system. In section 3, the
nonlocal behavior of the GHZ state is studied by analyzing the extent of violation of Bell-type
inequality. The effect of BNSD is demonstrated. Finally, we give a short conclusion.

2. Model

We consider a three-qubit system coupled to an environmental spin chain, which is described
by a one-dimensional transverse Ising model. The corresponding Hamiltonian is given by

H = Hω
E + HI , (1)

where (we take h̄ = 1)

Hω
E =

L∑
j

σ x
j σ x

j+1 + ω

L∑
j

σ z
j

2
, (2a)

HI =
(gA

2
σ z

A +
gB

2
σ z

B +
gC

2
σ z

C

) L∑
j

σ z
j

2
, (2b)

with Hω
E describing the Hamiltonian of the environmental Ising chain, and HI denoting

the interaction between the central three-qubit spins and the environmental Ising chain.
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The parameter ω characterizes the strength of the transverse field, and gl (l = A,B,C)
denote the coupling constants between the environment and the three spins. The operators
σl (l = A,B,C) and σα

j (α = x, y, z) are the Pauli matrices of the central three qubits and
the j th site of the environmental spin chain, respectively, and the total number of spins in the
Ising chain is L. The sum over j goes from 1 to L for periodic boundary conditions, where
we assume that σα

L+1 = σα
1 .

In order to diagonalize the Hamiltonian, we rewrite H in the following form:

H =
∑
μμ′

|φμ〉〈φμ|H |φμ′ 〉〈φμ′ |
(3)

=
∑
μμ′

|φμ〉〈φμ′ |(〈φμ|HI |φμ′ 〉 + 〈φμ|Hω
E |φμ′ 〉),

where |φμ〉 (μ = 1, . . . , 8) is the μth eigenstate of the operator
∑

l glσ
z
l

/
2, and the

corresponding eigenvalues can easily be obtained in the three-qubit subspace:

E1 = gA + gB + gC

2
, E2 = gA + gB − gC

2
,

E3 = gA − gB + gC

2
, E4 = gA − gB − gC

2
,

E5 = −gA + gB + gC

2
, E6 = −gA + gB − gC

2
,

E7 = −gA − gB + gC

2
, E8 = −gA − gB − gC

2
.

(4)

We note that
[
gAσ z

A + gBσ z
B + gCσ z

C, σ α
j

] = 0; thus the operator ω +
∑

l glσ
z
l

/
2 (l = A,B,C)

is a conserved quantity and it can simply be treated as a constant with different values
corresponding to the eigenvalues of

∑
l

glσ
z
l /2. Then from equation (3), we have

H =
∑

μ

|φμ〉〈φμ| ⊗ H
(ωμ)

E , (5)

where the parameter ωμ is given by ωμ = ω + Eμ,and H
(ωμ)

E is given from Hω
E by the

replacement of ω with ωμ, H
(ωμ)

E = Hω
E + Eμ

∑
j σ z

j /2.
Considering the initial state |ψ(0)〉 = |�S(0)〉 ⊗ |ϕE(0)〉, where |�S(0)〉 is the initial

state for the three central spins and |ϕE(0)〉 is the initial state for the environmental Ising
chain. The subsequent time evolution of the coupled spin system is determined by the time
evolution operator U(t) = exp(−iHt). After explicitly knowing |ψ(t)〉 = U(t)|ψ(0)〉, the
main quantity of our investigation, i.e. the reduced density matrix of the tripartite system,
will be straightforwardly obtained. For this purpose, we follow the standard procedure of
Hamiltonian diagonalization by employing the Jordan–Wigner transformation [19] which
maps spins to one-dimensional spinless fermions with the creation and annihilation operators
a
†
j and aj :

σx
j = ∏

i<j

(1 − 2a
†
i ai)(aj + a

†
j ),

σ
y

j = −i
∏
i<j

(1 − 2a
†
i ai)(aj − a

†
j ),

σ z
j = 1 − 2a

†
j aj .

(6)

After a straightforward transform, the dressed environmental Hamiltonian becomes

H
(ωμ)

E =
L∑
j

[aj+1aj + a
†
j+1aj + a

†
j aj+1 + a

†
j a

†
j+1 + ωμ(1 − 2a

†
j aj )]. (7)
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Now by introducing the Fourier transforms of the fermionic operators described by dk =
1√
L

∑
j aj e−i2πkj/L with k = −M, . . . ,M and M = (L − 1)/2 for odd L, the Hamiltonian

H
(ωμ)

E becomes

H
(ωμ)

E =
∑

k

idkd−k sin
2πk

L
+

∑
k

id†
kd

†
−k sin

2πk

L
+

∑
k

d
†
kdk

(
2 cos

2πk

L
− 2ωμ

)
. (8)

Finally by defining the Bogoliubov transformed fermion operators

γk,ωμ
= cos

β
(ωμ)

k

2
dk − i sin

β
(ωμ)

k

2
d
†
−k, (9)

with the angles β
(ωμ)

k satisfying

β
(ωμ)

k = arctan

[
sin 2πk

L

ωμ − cos 2πk
L

]
, (10)

one can obtain the final Hamiltonian as

H
(ωμ)

E =
∑

k

ε
(ωμ)

k

(
γ
†
k,ωμ

γk,ωμ
− 1

2

)
, (11)

where the energy spectrum ε
(ωμ)

k is expressed as follows:

ε
(ωμ)

k =
√

(2ωμ − 2 cos ka)2 + 4 sin2 ka (12)

where the lattice spacing a takes the value of 2π/L. According to equation (9), it is
straightforward to find that the normal mode γk,ωμ

dressed by the system–environment
interaction can be related to the purely environmental normal mode γk,ω by the relation

γk,ωμ
= (

cos 

(ωμ)

k

)
γk,ω − i

(
sin 


(ωμ)

k

)
γ
†
−k,ω,

with 

(ωμ)

k = (
β

(ωμ)

k − β
(ω)
k

)/
2.

(13)

The time evolution operator for the Hamiltonian (5) is given by

U(t) =
8∑

μ=1

|φμ〉〈φμ| ⊗ U
(ωμ)

E (t), (14)

where U
(ωμ)

E (t) = exp(−iH
(ωμ)

E t) is the projected time evolution operator for the Ising chain
dressed by the system–environment interaction parameter ωμ. In terms of these notations, we
can derive the time evolution of quantum states and obtain the reduced density matrix of the
system. Assume that initially the three-qubit system is disentangled with the environment, i.e.
at t = 0 the three-qubit spins and the environmental Ising chain are assumed to be described by
the product state |ψ(0)〉 = |�S(0)〉 ⊗ |ϕE(0)〉, where |�S(0)〉 is the initial state for the three-
qubit system and |ϕE(0)〉 = |0〉k=0 ⊗k�0 |0〉k|0〉−k is the initial state for the environmental
Ising chain, which is the vacuum of the fermionic modes described by γk|0〉k = 0. Tracing
out the environment, we can go straightforwardly to obtain the reduced density matrix of the
three-qubit system:

ρS(t) = TrE|ψ(t)〉〈ψ(t)|
= TrE[U(t)|ψ(0)〉〈ψ(0)|U(t)†]

= TrE[e−iHtρS(0) ⊗ |ϕE(0)〉〈ϕE(0)|eiH t ]

=
8∑

μ,ν=1

cμc∗
ν〈ϕE(0)|U †(ων)

E (t)U
(ωμ)

E (t)|ϕE(0)〉|φμ〉〈φν |, (15)
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with cμ = 〈φμ|�S〉. We define the decoherence factor as follows:

F(t) = 〈ϕE(0)|U †(ων)

E (t)U
(ωμ)

E (t)|ϕE(0)〉. (16)

One can see from equation (16) that the decoherence factor |F(t)μν | can be considered as
the amplitude of the overlap between two different states of the environment obtained by
evolving the initial state with H

(ωμ)

E and H
(ων)
E . According to equations (15) and (16), the

environmental Ising chain only modulates the off-diagonal terms of ρS(t), whereas the diagonal
terms of ρS(t) are not affected by the environment, because the decoherence factor remains
unity when μ = ν; the fact means that there is no dynamic correlation between the central
qubits and environmental Ising chain. Let the initial state of the three-qubit system be in
a GHZ state |�S(0)〉 = ā1|000〉 + ā8|111〉, where ā1 and ā8 are the complex coefficients in
polar forms ā1 = |ā1|eiϑ(ā1) and ā8 = |ā8|eiϑ(ā8), and they satisfy the normalization relation
|ā1|2 + |ā8|2 = 1. Let us write the relative phase angle between the amplitudes |ā1| and |ā8|
as δ = ϑ(ā1) − ϑ(ā8). From the evolution operator (14), the state vector of the composite
system at time t is given by

|ψ(t)〉 = ā1|000〉 ⊗ U
(ω1)
E |ϕE(0)〉 + ā8|111〉 ⊗ U

(ω8)
E |ϕE(0)〉, (17)

where U
(ωμ)

E (μ = 1, 8) can be obtained from the unitary operator U(t) by replacing ω with
ωμ, respectively. When exposed to the environment, the initial GHZ class states evolve to the
resultant state

ρGHZ(t) = |ā1|2|000〉〈000| + ā1ā
∗
8F18|000〉〈111| + ā∗

1 ā8F
∗
18|111〉〈000| + |ā8|2|111〉〈111|.

(18)

Equation (18) is our starting point for the following calculation and discussion. From the
relationship between the Bogoliubov modes γk,ω and γk,ωμ

(equation (13)), the projected time
evolution operator, and the initial vacuum state, the factor F18 in equation (16) which denotes
the effect of decoherence induced by the environment can be written as [15]

|F18| = 〈ϕE(0)|U †(ω1)

E U
(ω8)
E |ϕE(0)〉

= −k〈0|k〈0|k>0 ⊗k=0 〈0|
∏
k

exp

[
itε(ω1)

k

(
γ
†
k,ω1

γk,ω1 − 1

2

)]

×
∏
k

exp

[
−iε(ω8)

k t

(
γ
†
k,ω8

γk,ω8 − 1

2

)]
|0〉k=0 ⊗ |0〉k|0〉−k

=
∏
k>0

{
1 − sin2 (

ε
(ω1)
k t

)
sin2 (

ε
(ω8)
k t

)
× sin2 (

β
(ω1)
k − β

(ω8)
k

) − [
sin

(
ε

(ω1)
k t

)
cos

(
ε

(ω8)
k t

)
× sin

(
β

(ω1)
k

) − cos
(
ε

(ω1)
k t

)
sin

(
ε

(ω8)
k t

)
sin

(
β

(ω8)
k

)]2}1/2

=
∏
k>0

Fk, (19)

where β
(ωμ)

k , ε
(ωμ)

k (μ = 1, 8) can be calculated by replacing ω with ωμ in equations (10) and
(12), respectively, and ωμ is expressed as follows:

ω1 = ω + E1 = ω +
gA + gB + gC

2
,

ω8 = ω + E8 = ω − gA + gB + gC

2
.

(20)

Clearly, every factor Fk is less than unity, so it can be expected that in the large L limit, |F18|
will go to zero under some reasonable conditions.
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3. Bell-nonlocality sudden death

It is known that except for the two-qubit case, there is still no efficient general method to
evaluate all entanglement for general mixed states of multipartite systems. The tool employed
here to analyze the tripartite nonlocality is the Bell-type inequality, which is one of the
important mathematical criteria for entanglement.

For N−qubit systems, there are two kinds of multipartite Bell inequalities used to detect
the degree of nonlocality as measured by the extent of their violations. The first one was
proposed by Mermin [20] and further developed by Ardehali [21], Belinskii and Klyshko
[22] (MABK inequality) and Gisin and Bechmann-Pasquinucci [23]. The second one was
presented later by Werner and Wolf [24] and Żukowski and Brukner [25] (WWZB inequality).
This single general inequality is both a necessary and a sufficient condition for the behavior of
a quantum system of N qubits to be describable by a fully Bell-local hidden-variable model;
however, it is often too difficult to calculate. As these two inequalities are equivalent in the
case N = 3, we choose the MABK inequality as a criterion for Bell locality, because its
computation is much easier than the second one.

A quantum state ρ violates the MABK inequality if

|〈BN 〉ρ | > 1. (21)

In the simplest case of two qubits, N = 2, the operator BN on the left-hand side of the
MABK inequality is just the Clauser–Horne—Shimony–Holt (CHSH) operator for two-
particle systems [26]:

B2 = 1
2 [MAMB + MAM ′

B + M ′
AMB − M ′

AM ′
B]. (22)

The specific form of the operator B3 for our tripartite system can be written as

B3 = 1
2 [MAMBM ′

C + MAM ′
BMC + M ′

AMBMC − M ′
AM ′

BM ′
C], (23)

where the measurement operators MK and M ′
K are the operators corresponding to

measurements on each of the qubits K (A B, or C), while the primed and unprimed terms
denote the two different directions in which the measurements on each particle can be chosen.
Defining MA ≡ σy and M ′

A ≡ σx , the measurement operator acting upon each successive
subsystem is defined with respect to the first qubit by θK :(

MK

M ′
K

)
= R(θK)

(
MA

M ′
A

)
, (24)

where

R(θK) =
(

cos θK − sin θK

sin θK cos θK

)
. (25)

In the case of three qubits, there are two such rotation angles θB and θC ; the corresponding
measurement operators for qubits A, B and C can be written in terms of Pauli operators as

MA = σy ⊗ I ⊗ I,

M ′
A = σx ⊗ I ⊗ I,

MB = I ⊗ [cos(θB)σy − sin(θB)σx] ⊗ I,

M ′
B = I ⊗ [sin(θB)σy + cos(θB)σx] ⊗ I,

MC = I ⊗ I ⊗ [cos(θC)σy − sin(θC)σx],
M ′

C = I ⊗ I ⊗ [sin(θC)σy + cos(θC)σx].

(26)
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The expectation value of the B3 operator for the GHZ state can be obtained as

〈B3〉ρGHZ(t) = tr[B3ρGHZ(t)]

= tr[
[

1
2 (MAMBM ′

C + MAM ′
BMC + M ′

AMBMC − M ′
AM ′

BM ′
C)ρGHZ(t)

]
= −2F18[(ā1ā

∗
8 + ā∗

1 ā8) cos(θB + θC) + i(ā1ā
∗
8 − ā∗

1 ā8) sin(θB + θC)]

= −4|ā1| · |ā8| · F18 cos θBCδ, (27)

where θBCδ = θB + θC + δ. The MABK inequality is violated whenever |〈B3〉ρGHZ(t)| > 1. One
can calculate the expectation value of the MABK operator by substituting equation (19) into
the above equation. It can be seen that the maximum value is |〈B3〉ρGHZ(t)| = 2F18, since the
cosine term is limited by unity, and for the states of interest 1/2 � |ā1||ā8| > 1/4, where the
upper bound 1/2 represents a maximally entangled state and the lower bound 1/4 corresponds
to a maximally mixed state. When the time is short enough, inequality (21) is satisfied, that
is, Bell nonlocality is existent at the beginning. According to equation (19), each factor Fk

has a norm less than unity; therefore, |F18| may decrease to zero in the large L limit under
some reasonable conditions. It means that under some reasonable conditions, the expectation
value of the MABK operator becomes equal to or less than unity in a finite timescale τBNSD,
so that tripartite Bell nonlocality is nonexistent after that. The timescale τBNSD suffices to
demonstrate tripartite BNSD of initial Bell-nonlocal states due to the correlated environment.
When t > τBNSD, |〈B3〉ρGHZ(t)| is less than unity and no longer violates the inequality for all
choices of θBCδ .

To analyze the effect of an environment on Bell nonlocality in the three-qubit system,
we numerically calculate the exact expression of equation (27) and plot the expectation
value of the MABK operator as a function of time for different values of the transverse
field and the coupling constant g = (gA + gA + gC)/2 in figure 1. Under weak coupling
(g = 0.15), one can find that the expectation value of the operator shows an oscillating
and exponentially decaying function when ω < 2 (for the curves ω = 0 and ω = 1).
The phenomenon of BNSD occurs for definite times and then the nonlocality revives. This
process will persist for some periods determined by the parameter ω. However, when ω � 2,
the evolution of |〈B3〉ρGHZ(t)| will vanish monotonically without any revivals, and it is very
sensitive to the changes of the transverse field. With the decrease of the strength of the
transverse field, the expectation value of the operator decays more sharply. For the case
g = 1.5, one can find that the expectation value of the operator will no longer revived,
but will decay exponentially to zero. Therefore, BNSD can always occur by the timescale
for which |〈B3〉ρGHZ(t)| reaches unity from above. When we continue enlarging the coupling
strength, e.g. g = 15, some collapses and revivals are observed in the time evolution of the
expectation value of the operator. Moreover, we can find that there exists the destruction
of Bell-nonlocality behavior at the very beginning, i.e. |〈B3〉ρGHZ(0)| > 1. Subsequently, the
phenomenon of BNSD occurs at some definite timescale and the Bell nonlocality revives later;
only when the time reaches a certain value can the tripartite nonlocality not revive eventually.
If the coupling takes a value large enough as g = 150, it can be seen from the last subfigure
of figure 1 that the expectation value of the operator oscillates quickly and tends to be a
constant near 1.95 with the increase of time. Therefore, inequality (19) is always satisfied,
|〈B3〉ρGHZ(t)| > 1, and it can be expected that the phenomenon of BNSD will not occur in the
strong-coupling region.

Such a result is consistent with the analysis of [16] in which the authors discuss the
entanglement dynamics of three-qubit states under decoherence induced by an environment.
They employ negativity to measure the quantum correlation between one central qubit
and other two qubits NA−BC, NB−AC and NC−AB. In our presentation, we aim to study
Bell nonlocality in a three-qubit system coupled to an environment by making use of the

7
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Figure 1. The absolute value of 〈B3〉ρGHZ(t) versus time is plotted for four different kinds of
coupling: g = 0.15, g = 1.5, g = 15 and g = 150 when ω as the strength of the transverse field of
the environment takes different values, where θBCδ = π , |ā1| = |ā8| = 1/

√
2, g = (gA+gB +gC)/2

and L = 200.

Figure 2. The absolute value of 〈B3〉ρGHZ(t) versus time is plotted under different sizes
of the degrees of freedom of the environment, where θBCδ = π , |ā1| = |ā8| = 1/

√
2,

g = (gA + gB + gC)/2 = 1.5 and ω = 2.

MABK operator, and obtain some similar results compared with their figure 2. It is not
surprising because negativity can efficiently calculate the quantum entanglement of the
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three-qubit quantum state, while the MABK inequality is a valid probe of entanglement: given
a source of entangled particles, its violation is a signature of the nonlocal nature of quantum
mechanics.

In order to examine the effect of the size of the degrees of freedom of an environment
on Bell nonlocality, we numerically calculate the evolution of |〈B3〉ρGHZ(t)| with different sizes
of the environmental chain with the coupling strength g = 1.5 in figure 2. From the figure
one can see that the expectation of the operator decays exponentially to zero with the increase
of time. Thus, BNSD can always take place at some definite timescale τBNSD; namely, there
exists a finite time after which we have |〈B3〉ρGHZ(τBNSD)| � 1. With the increase of the size L

from 200 to 1000, we can observe the decrease of the timescale. In respect to the fact that each
factor Fk in equation (19) is less than unity, it is reasonable to conclude that the larger size of
the environment will more effectively suppress the factor F18, and consequently suppress the
expectation value of the MABK operator.

4. Conclusions

We have studied the nonlocal behavior of a three-qubit system coupled to a transverse Ising
chain by calculating the extent of violation of MABK inequality. Our results imply that there
exists the destruction of Bell-nonlocal behavior due to the environment.

In the weak-coupling region, the phenomenon of BNSD is shown by the qualitative
demonstration that the three-qubit system prepared in the GHZ state initially violating the
MABK inequality fails to violate it in a finite timescale. The effect of the strength of the
transverse field and the size of the environmental Ising chain on the expectation value of
the Bell-type operator B3 is also considered. Under different conditions, i.e. with different
coupling strength, transverse field and the size of the environmental chain, the expectation
value of the Bell-type operator for the state under the influence of a spin environment on
the three-qubit system prepared in the GHZ state shows different behaviors. However in the
strong-coupling region, we find that the inequality |〈B3〉ρGHZ(t)| > 1 is always satisfied, which
means that tripartite Bell-nonlocality is existent all the time and one cannot observe the effect
of BNSD.

The study of BNSD is of importance in a tripartite system, because tripartite systems can
exhibit some essential characteristics which are impossible in the bipartite case. In addition,
our results may help to understand the Bell-nonlocal behavior of a tripartite system in a
correlated environment.
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